3.720 \(\int \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x)) \, dx\)

Optimal. Leaf size=45 \[ -\frac{2 a \sqrt{\cot (c+d x)}}{d}-\frac{2 \sqrt [4]{-1} a \tanh ^{-1}\left ((-1)^{3/4} \sqrt{\cot (c+d x)}\right )}{d} \]

[Out]

(-2*(-1)^(1/4)*a*ArcTanh[(-1)^(3/4)*Sqrt[Cot[c + d*x]]])/d - (2*a*Sqrt[Cot[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.0784045, antiderivative size = 45, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {3673, 3528, 3533, 208} \[ -\frac{2 a \sqrt{\cot (c+d x)}}{d}-\frac{2 \sqrt [4]{-1} a \tanh ^{-1}\left ((-1)^{3/4} \sqrt{\cot (c+d x)}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x]),x]

[Out]

(-2*(-1)^(1/4)*a*ArcTanh[(-1)^(3/4)*Sqrt[Cot[c + d*x]]])/d - (2*a*Sqrt[Cot[c + d*x]])/d

Rule 3673

Int[(cot[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Cot[e + f*x])^(m - n*p)*(b + a*Cot[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3533

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(2*c^2)/f, S
ubst[Int[1/(b*c - d*x^2), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x)) \, dx &=\int \sqrt{\cot (c+d x)} (i a+a \cot (c+d x)) \, dx\\ &=-\frac{2 a \sqrt{\cot (c+d x)}}{d}+\int \frac{-a+i a \cot (c+d x)}{\sqrt{\cot (c+d x)}} \, dx\\ &=-\frac{2 a \sqrt{\cot (c+d x)}}{d}+\frac{\left (2 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{a+i a x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{d}\\ &=-\frac{2 \sqrt [4]{-1} a \tanh ^{-1}\left ((-1)^{3/4} \sqrt{\cot (c+d x)}\right )}{d}-\frac{2 a \sqrt{\cot (c+d x)}}{d}\\ \end{align*}

Mathematica [C]  time = 0.686791, size = 67, normalized size = 1.49 \[ \frac{2 a \sqrt{\cot (c+d x)} \left (-1+\sqrt{i \tan (c+d x)} \tanh ^{-1}\left (\sqrt{\frac{-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}\right )\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x]),x]

[Out]

(2*a*Sqrt[Cot[c + d*x]]*(-1 + ArcTanh[Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]]*Sqrt[I*Tan[c
 + d*x]]))/d

________________________________________________________________________________________

Maple [C]  time = 0.207, size = 722, normalized size = 16. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c)),x)

[Out]

-a/d*2^(1/2)*(I*cos(d*x+c)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))
^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticF(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))-I
*cos(d*x+c)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*
x+c)-1)/sin(d*x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-cos(d
*x+c)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1
)/sin(d*x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+I*((1-cos(d
*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(
1/2)*EllipticF(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))-I*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+
c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticPi(((1-cos(d*
x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d
*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/
sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+2^(1/2)*cos(d*x+c))*(cos(d*x+c)/sin(d*x+c))^(3/2)*sin(d*x+c)/cos(d*x+
c)^2

________________________________________________________________________________________

Maxima [C]  time = 1.537, size = 171, normalized size = 3.8 \begin{align*} \frac{{\left (-\left (2 i - 2\right ) \, \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} + \frac{2}{\sqrt{\tan \left (d x + c\right )}}\right )}\right ) - \left (2 i - 2\right ) \, \sqrt{2} \arctan \left (-\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} - \frac{2}{\sqrt{\tan \left (d x + c\right )}}\right )}\right ) + \left (i + 1\right ) \, \sqrt{2} \log \left (\frac{\sqrt{2}}{\sqrt{\tan \left (d x + c\right )}} + \frac{1}{\tan \left (d x + c\right )} + 1\right ) - \left (i + 1\right ) \, \sqrt{2} \log \left (-\frac{\sqrt{2}}{\sqrt{\tan \left (d x + c\right )}} + \frac{1}{\tan \left (d x + c\right )} + 1\right )\right )} a - \frac{8 \, a}{\sqrt{\tan \left (d x + c\right )}}}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c)),x, algorithm="maxima")

[Out]

1/4*((-(2*I - 2)*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) - (2*I - 2)*sqrt(2)*arctan(-1/2*
sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) + (I + 1)*sqrt(2)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) +
1) - (I + 1)*sqrt(2)*log(-sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1))*a - 8*a/sqrt(tan(d*x + c)))/d

________________________________________________________________________________________

Fricas [C]  time = 1.38951, size = 602, normalized size = 13.38 \begin{align*} \frac{d \sqrt{\frac{4 i \, a^{2}}{d^{2}}} \log \left (\frac{{\left ({\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt{\frac{4 i \, a^{2}}{d^{2}}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} + 2 i \, a e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{a}\right ) - d \sqrt{\frac{4 i \, a^{2}}{d^{2}}} \log \left (-\frac{{\left ({\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt{\frac{4 i \, a^{2}}{d^{2}}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} - 2 i \, a e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{a}\right ) - 8 \, a \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c)),x, algorithm="fricas")

[Out]

1/4*(d*sqrt(4*I*a^2/d^2)*log(((d*e^(2*I*d*x + 2*I*c) - d)*sqrt(4*I*a^2/d^2)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(
e^(2*I*d*x + 2*I*c) - 1)) + 2*I*a*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/a) - d*sqrt(4*I*a^2/d^2)*log(-((d*
e^(2*I*d*x + 2*I*c) - d)*sqrt(4*I*a^2/d^2)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)) - 2*I*a
*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/a) - 8*a*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)
))/d

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(3/2)*(a+I*a*tan(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (i \, a \tan \left (d x + c\right ) + a\right )} \cot \left (d x + c\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)*cot(d*x + c)^(3/2), x)